Masoud Babaie

Publications

  1. Cryo-CMOS Circuits and Systems for Quantum Computing Applications
    B. Patra; R. M. Incandela; J. P. G. van Dijk; H. A. R. Homulle; L. Song; M. Shahmohammadi; R. B. Staszewski; A. Vladimirescu; M. Babaie; F. Sebastiano; E. Charbon;
    IEEE Journal of Solid-State Circuits,
    Volume 53, Issue 1, pp. 309-321, Jan 2018. DOI: 10.1109/JSSC.2017.2737549
    Keywords: ... CMOS technology;Cryogenics;Oscillators;Process control;Quantum computing;Temperature;CMOS characterization;Class-F oscillator;cryo-CMOS;low-noise amplifier (LNA);noise canceling;phase noise (PN);quantum bit (qubit);quantum computing;qubit control;single-photon avalanche diode (SPAD).

  2. A Total-Power Radiometer Front End in a 0.25- $mu textm$ BiCMOS Technology With Low $1/f$ -Corner
    S. Malotaux; M. Babaie; M. Spirito;
    IEEE Journal of Solid-State Circuits,
    Volume 52, Issue 9, pp. 2256-2266, Sept 2017. DOI: 10.1109/JSSC.2017.2705659
    Keywords: ... 1/f noise;BiCMOS integrated circuits;Ge-Si alloys;carbon;low noise amplifiers;millimetre wave amplifiers;millimetre wave detectors;radiometers;semiconductor materials;white noise;1/f -noise corner;BiCMOS technology;LNA;NEP;SiGe:C;bandwidth 6 GHz;frequency 56 GHz;heterojunction bipolar transistor;high-sensitivity millimeter-wave total-power radiometer front-end;large area high resistive value load resistor;low noise-equivalent power;low transformation ratio;optimum bias;size 0.25 nm;two cascode stage low-noise amplifier;voltage-driven common-emitter square-law detector;white noise;wideband signal transfer;Antennas;Bandwidth;BiCMOS integrated circuits;Detectors;Radio frequency;Radiometry;Signal to noise ratio;Direct detection;flicker noise;low-noise amplifier (LNA);millimeter-wave (mm-wave);radiometer;square-law detector.

  3. Tuning range extension of a transformer-based oscillator through common-mode Colpitts resonance
    M. Shahmohammadi; M. Babaie; R. B. Staszewski;
    IEEE Trans. on Circuits and Systems I (TCAS-I),,
    Volume 64, Issue 4, pp. 836–846, April 2017. DOI: 10.1109/TCSI.2016.2625199

  4. 15.5 Cryo-CMOS circuits and systems for scalable quantum computing
    E. Charbon; F. Sebastiano; M. Babaie; A. Vladimirescu; M. Shahmohammadi; R. B. Staszewski; H. A. R. Homulle; B. Patra; J. P. G. van Dijk; R. M. Incandela; L. Song; B. Valizadehpasha;
    In 2017 IEEE International Solid-State Circuits Conference (ISSCC),
    pp. 264-265, Feb 2017. DOI: 10.1109/ISSCC.2017.7870362
    Keywords: ... Cryogenics;Oscillators;Program processors;Quantum computing;Semiconductor device modeling;Substrates;Temperature sensors.

  5. A 1/f Noise Upconversion Reduction Technique for Voltage-Biased RF CMOS Oscillators
    M. Shahmohammadi; M. Babaie; R. B. Staszewski;
    IEEE Journal of Solid-State Circuits,
    Volume 51, Issue 11, pp. 2610-2624, Nov 2016. DOI: 10.1109/JSSC.2016.2602214
    Keywords: ... 1/f noise;CMOS integrated circuits;LC circuits;flicker noise;harmonics suppression;interference suppression;phase noise;radiofrequency oscillators;1/f noise upconversion reduction technique;CMOS technology;class-D oscillators;class-F oscillators;common mode excitations;current harmonics;differential mode excitations;equivalent resistance;flicker noise upconversion;inductor based tanks;phase noise;tank current;transformer based tanks;voltage biased RF CMOS oscillators;Capacitors;Harmonic analysis;Oscillators;Radio frequency;Resistors;Resonant frequency;Transistors;Class-D oscillator;class-F oscillator;digitally controlled oscillator;flicker noise;flicker noise upconversion;impulse sensitivity function (ISF);phase noise (PN);voltage-biased RF oscillator.

  6. A Fully Integrated Bluetooth Low-Energy Transmitter in 28 nm CMOS With 36\% System Efficiency at 3 dBm
    M. Babaie; F. W. Kuo; H. N. R. Chen; L. C. Cho; C. P. Jou; F. L. Hsueh; M. Shahmohammadi; R. B. Staszewski;
    IEEE Journal of Solid-State Circuits,
    Volume 51, Issue 7, pp. 1547-1565, July 2016. DOI: 10.1109/JSSC.2016.2551738
    Keywords: ... Bluetooth;CMOS digital integrated circuits;MOSFET circuits;constant current sources;digital phase locked loops;low-power electronics;oscillators;radio transmitters;radiofrequency integrated circuits;radiofrequency power amplifiers;1/f noise reduction;Bluetooth low-energy mode;CMOS transistors;all-digital PLL;class-E-F2 switching power amplifier;digitally controlled oscillator;direct DCO data modulation;efficiency 36 percent;energy-hungry RF circuits;fully integrated Bluetooth low-energy transmitter architecture;metal density;power 3.6 mW;power 5.5 mW;sampling rate reduction;size 28 nm;supply voltage reduction;switching current sources;threshold voltage;ultra-low power radios;CMOS integrated circuits;Inductors;Oscillators;Q-factor;Radio frequency;Radio transmitters;Switches;All-digital PLL;Bluetooth Low-Energy;Internet of Things (IoT);class-E/F 2 power amplifier;low-power transmitter;low-voltage oscillator;switching current-source oscillator.

  7. A 60 GHz Frequency Generator Based on a 20 GHz Oscillator and an Implicit Multiplier
    Z. Zong; M. Babaie; R. B. Staszewski;
    IEEE Journal of Solid-State Circuits,
    Volume 51, Issue 5, pp. 1261-1273, May 2016. DOI: 10.1109/JSSC.2016.2528997
    Keywords: ... CMOS digital integrated circuits;field effect MIMIC;frequency multipliers;millimetre wave frequency convertors;millimetre wave oscillators;phase noise;FoM;PN performance;digital CMOS process;extraction techniques;figure-of-merit;frequency 20 GHz;frequency 57.8 GHz;frequency 60 GHz;frequency generator;frequency tuning range;implicit multiplier;local oscillator signal;mm-wave frequency generation technique;phase detection;phase noise performance;phase-locked loop;power efficiency;size 40 nm;third-harmonic boosting techniques;Boosting;Frequency conversion;Harmonic analysis;Oscillators;Phase locked loops;Power demand;Resonant frequency;60 GHz;60 GHz;PLL;frequency divider;harmonic boosting;harmonic extraction;implicit multiplier;mm-wave;oscillator;phase noise (PN);transformer.

  8. A Bluetooth low-energy (BLE) transceiver with TX/RX switchable on-chip matching network, 2.75mW high-IF discrete-time receiver, and 3.6mW all-digital transmitter
    F. W. Kuo; S. B. Ferreira; M. Babaie; R. Chen; L. c. Cho; C. P. Jou; F. L. Hsueh; G. Huang; I. Madadi; M. Tohidian; R. B. Staszewski;
    In 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits),
    pp. 1-2, June 2016. DOI: 10.1109/VLSIC.2016.7573480
    Keywords: ... Bluetooth;Internet of Things;MOS integrated circuits;band-pass filters;oscillators;phase locked loops;radio transceivers;radio transmitters;1-pin direct antenna connection;Bluetooth LE;Bluetooth low-energy transceiver;CMOS;Internet-of-Things;IoT;MOS devices;TX/RX switchable on-chip matching network;The receiver;all-digital PLL;all-digital transmitter;discrete-time architecture;high-IF discrete-time receiver;integrated on-chip matching network;multirate charge-sharing bandpass filters;power 2.75 mW;power 3.6 mW;power consumption;size 28 nm;switched-current-source digitally controlled oscillator;transmitter;ultra-low-power transceiver;Band-pass filters;Capacitors;Gain;Power demand;Switches;System-on-chip;Transceivers.

  9. Power Efficient RF/mm-wave Oscillators and Power Amplifiers for Wireless Applications
    M. Babaie;
    PhD thesis, Delft University of Technology, http://doi.org/10.4233/uuid:456a2f0e-529d-4bd8-91e0-4dba4f623f0f, 6 2016. Promotor: R.B. Staszewski.

  10. An Ultra-Low Phase Noise Class-F 2 CMOS Oscillator With 191 dBc/Hz FoM and Long-Term Reliability
    M. Babaie; R. B. Staszewski;
    IEEE Journal of Solid-State Circuits,
    Volume 50, Issue 3, pp. 679-692, March 2015.

  11. A fully integrated 28nm Bluetooth Low-Energy transmitter with 36% system efficiency at 3dBm
    F. W. Kuo; M. Babaie; R. Chen; K. Yen; J. Y. Chien; L. Cho; F. Kuo; C. P. Jou; F. L. Hsueh; R. B. Staszewski;
    In ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC),
    pp. 356-359, Sept 2015.

  12. 25.4 A 1/f noise upconversion reduction technique applied to Class-D and Class-F oscillators
    M. Shahmohammadi; M. Babaie; R. B. Staszewski;
    In 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers,
    pp. 1-3, Feb 2015.

  13. A 60 GHz 25% tuning range frequency generator with implicit divider based on third harmonic extraction with 182 dBc/Hz FoM
    Z. Zong; M. Babaie; R. B. Staszewski;
    In 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC),
    pp. 279-282, May 2015.

  14. A 0.5V 0.5mW switching current source oscillator
    M. Babaie; M. Shahmohammadi; R. B. Staszewski;
    In 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC),
    pp. 183-186, May 2015.

  15. A wideband 60 GHz class-E/F2 power amplifier in 40nm CMOS
    M. Babaie; R. B. Staszewski; L. Galatro; M. Spirito;
    In 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC),
    pp. 215-218, May 2015.

  16. A 12mW all-digital PLL based on class-F DCO for 4G phones in 28nm CMOS
    Feng-Wei Kuo; R. Chen; K. Yen; Hsien-Yuan Liao; Chewn-Pu Jou; Fu-Lung Hsueh; M. Babaie; R. B. Staszewski;
    In 2014 Symposium on VLSI Circuits Digest of Technical Papers,
    pp. 1-2, June 2014.

  17. A Class-F CMOS Oscillator
    M. Babaie; R. B. Staszewski;
    IEEE Journal of Solid-State Circuits,
    Volume 48, Issue 12, pp. 3120-3133, Dec 2013.

  18. Ultra-low phase noise 7.2 #x2013;8.7 Ghz clip-and-restore oscillator with 191 dBc/Hz FoM
    M. Babaie; A. Visweswaran; Z. He; R. B. Staszewski;
    In 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC),
    pp. 43-46, June 2013.

  19. A study of RF oscillator reliability in nanoscale CMOS
    M. Babaie; R. B. Staszewski;
    In 2013 European Conference on Circuit Theory and Design (ECCTD),
    pp. 1-4, Sept 2013.

  20. Third-harmonic injection technique applied to a 5.87-to-7.56GHz 65nm CMOS Class-F oscillator with 192dBc/Hz FOM
    M. Babaie; R. B. Staszewski;
    In 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers,
    pp. 348-349, Feb 2013.

BibTeX support